explan_data <- read_delim("subj_explanations_main.csv",
delim = ";", escape_double = FALSE, trim_ws = TRUE)
##
## notKnow
## featherTooth 50
## spearNet 50
Note: Subjects’ explanations were coded in the last columns (the column names describe the coded criterion). 1 means that the coding criterion is (clearly) met, 0 that it isn’t.
# turn explanation coding values into factors
tdata_long$`Inferred absence total` <- tdata_long$`Inferred absence of latent feature due to visibility` + tdata_long$`Inferred absence of latent feature for any reason`
explan_data <- tdata_long
explan_data$`Correct explanation` <- as.factor(explan_data$`Correct explanation`)
explan_data$`Unclear explanation` <- as.factor(explan_data$`Unclear explanation`)
explan_data$`Inferred absence of latent feature due to visibility` <- as.factor(explan_data$`Inferred absence of latent feature due to visibility`)
explan_data$`Inferred absence of latent feature for any reason` <- as.factor(explan_data$`Inferred absence of latent feature for any reason`)
explan_data$`Inferred absence total` <- as.factor(explan_data$`Inferred absence total`)
# create a summary dataset that also contains the percentages
plotdata_between <- explan_data %>%
group_by(Features, `Correct explanation`) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
plotdata_between
## # A tibble: 4 × 5
## # Groups: Features [2]
## Features `Correct explanation` n pct lbl
## <fct> <fct> <int> <dbl> <chr>
## 1 Spear and net 0 15 0.3 30%
## 2 Spear and net 1 35 0.7 70%
## 3 Feathers and tooth 0 2 0.04 4%
## 4 Feathers and tooth 1 48 0.96 96%
plotdata_sub <- subset(plotdata_between, `Correct explanation` == 0)
plotdata <- plotdata_between
g<- ggplot(plotdata,
aes(x = Features,
y = pct,
fill = `Correct explanation`)) +
#facet_grid( ~ Features)+
geom_bar(stat = "identity",
position = "fill") +
scale_y_continuous(limits = seq(0, 2),
breaks = seq(0, 1, .25),
expand = c(0,0),
label = percent) +
#scale_x_discrete(labels = c("not \nmentioned", "'you don't \nknow'"))+
coord_cartesian(xlim =c(1, 2), ylim = c(0, 1.1))+
#coord_cartesian(clip = "off")+
geom_text(aes(label = lbl),
size = 4.5,
position = position_stack(vjust = 0.5)) +
scale_fill_brewer(palette = "Pastel1") +
labs(y = "Percentage",
fill = "Correct Explanation",
x = "Features")+
theme(legend.position = "top", axis.title = element_text(size = 15), axis.text = element_text(size = 13, color = "black"),
legend.text = element_text(size = 13),legend.title = element_text(size = 13))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
g
prop.test(x = c(plotdata$n[2], plotdata$n[4]), n = c(50, 50), alternative = "less", correct = F)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(plotdata$n[2], plotdata$n[4]) out of c(50, 50)
## X-squared = 11.977, df = 1, p-value = 0.0002693
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.0000000 -0.1440641
## sample estimates:
## prop 1 prop 2
## 0.70 0.96
# create a summary dataset that also contains the percentages
plotdata_between <- explan_data %>%
group_by(Features, `Inferred absence of latent feature due to visibility`) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
plotdata_between
## # A tibble: 3 × 5
## # Groups: Features [2]
## Features Inferred absence of latent feature due …¹ n pct lbl
## <fct> <fct> <int> <dbl> <chr>
## 1 Spear and net 0 43 0.86 86%
## 2 Spear and net 1 7 0.14 14%
## 3 Feathers and tooth 0 50 1 100%
## # … with abbreviated variable name
## # ¹`Inferred absence of latent feature due to visibility`
plotdata_sub <- subset(plotdata_between, `Inferred absence of latent feature due to visibility` == 1)
plotdata <- plotdata_between
g<- ggplot(plotdata,
aes(x = Features,
y = pct,
fill = `Inferred absence of latent feature due to visibility`)) +
#facet_grid( ~ Features)+
geom_bar(stat = "identity",
position = "fill") +
scale_y_continuous(limits = seq(0, 2),
breaks = seq(0, 1, .25),
expand = c(0,0),
label = percent) +
#scale_x_discrete(labels = c("not \nmentioned", "'you don't \nknow'"))+
coord_cartesian(xlim =c(1, 2), ylim = c(0, 1.1))+
#coord_cartesian(clip = "off")+
geom_text(aes(label = lbl),
size = 4.5,
position = position_stack(vjust = 0.5)) +
scale_fill_brewer(palette = "Pastel1") +
labs(y = "Percentage",
fill = "Inferred absence of \nunobserved feature \ndue to visibility",
x = "Features")+
theme(legend.position = "top", axis.title = element_text(size = 15), axis.text = element_text(size = 13, color = "black"),
legend.text = element_text(size = 13),legend.title = element_text(size = 13))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
g
prop.test(x = c(plotdata$n[2], 0), n = c(50, 50), alternative = "greater", correct = F)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(plotdata$n[2], 0) out of c(50, 50)
## X-squared = 7.5269, df = 1, p-value = 0.003039
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.05928477 1.00000000
## sample estimates:
## prop 1 prop 2
## 0.14 0.00
# create a summary dataset that also contains the percentages
plotdata_between <- explan_data %>%
group_by(Features, `Inferred absence total`) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
plotdata_between
## # A tibble: 3 × 5
## # Groups: Features [2]
## Features `Inferred absence total` n pct lbl
## <fct> <fct> <int> <dbl> <chr>
## 1 Spear and net 0 40 0.8 80%
## 2 Spear and net 1 10 0.2 20%
## 3 Feathers and tooth 0 50 1 100%
plotdata_sub <- subset(plotdata_between, `Inferred absence total` == 1)
plotdata <- plotdata_between
g<- ggplot(plotdata,
aes(x = Features,
y = pct,
fill = `Inferred absence total`)) +
#facet_grid( ~ Features)+
geom_bar(stat = "identity",
position = "fill") +
scale_y_continuous(limits = seq(0, 2),
breaks = seq(0, 1, .25),
expand = c(0,0),
label = percent) +
#scale_x_discrete(labels = c("not \nmentioned", "'you don't \nknow'"))+
coord_cartesian(xlim =c(1, 2), ylim = c(0, 1.1))+
#coord_cartesian(clip = "off")+
geom_text(aes(label = lbl),
size = 4.5,
position = position_stack(vjust = 0.5)) +
scale_fill_brewer(palette = "Pastel1") +
labs(y = "Percentage",
fill = "Inferred absence of unobserved feature (total)",
x = "Features")+
theme(legend.position = "top", axis.title = element_text(size = 15), axis.text = element_text(size = 13, color = "black"),
legend.text = element_text(size = 13),legend.title = element_text(size = 13))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
g
prop.test(x = c(plotdata$n[2], 0), n = c(50, 50), alternative = "greater", correct = F)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(plotdata$n[2], 0) out of c(50, 50)
## X-squared = 11.111, df = 1, p-value = 0.0004291
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.106953 1.000000
## sample estimates:
## prop 1 prop 2
## 0.2 0.0