tdata <- read_csv("exp_data.csv")
# demographics
min(tdata$age)
## [1] 19
max(tdata$age)
## [1] 76
mean(tdata$age)
## [1] 38.35
sd(tdata$age)
## [1] 12.82732
# 1 = male, 2 = female, 3 = other
table(tdata$gender)
##
## 1: male 2: female 3: non-binary
## 122 76 2
1 = male, 2 = female, 3 = non-binary, 4 = prefer not to say
##
## noInfo notKnow
## featherTooth 50 50
## spearNet 50 50
tdata_main <- subset(tdata_long, Knowledge == "'you don't know'")
tdata_supp <- subset(tdata_long, Knowledge == "no information")
myTheme <- theme(plot.title = element_text(face="bold", size = 22),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
axis.text.x = element_text(size = 14, angle = 0),
axis.text.y = element_text(size = 16, angle = 0),
legend.text = element_text(size = 18),
legend.title = element_text(face = "bold", size = 18),
strip.text.x = element_text(size = 18),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line.x = element_line(colour = "black"),
axis.line.y = element_line(colour = "black"),
axis.text = element_text(colour ="black"),
axis.ticks = element_line(colour ="black"))
tdata_sub <- tdata_main
library(see)
## first, turn sID into a factor
tdata_sub$subj_code <- factor(tdata_sub$subj_code)
pd <- position_dodge(width = 0.3)
tdata_sub$valueJitter <- jitter(tdata_sub$rating_rec, factor = 0.01, amount = 0.004)
theme_set(theme_light(base_size = 20, base_family = "Poppins"))
# new labes for the facets
g <- ggplot(tdata_sub, aes(x = Features, y = valueJitter)) +
guides(fill=FALSE)+
#facet_grid( ~ Knowledge)+
#ggtitle("Subjects' causal srength ratings") +
scale_y_continuous(limits = c(-5.3, 5.3), breaks=seq(-5, 5, 1), expand = c(0,0)) +
scale_x_discrete(labels=c("both \nsimilar", "latent feature \nharder")) +
#stat_summary(fun.y = mean, geom = "bar", position = "dodge", colour = "black", alpha =0.5) +
geom_violinhalf(aes(y = rating_rec, group = Features, fill = Features), color = NA,
position=position_dodge(1), alpha = 0.4)+
#geom_line(position = pd, color = "black", size = 1, alpha=0.04) +
geom_hline(yintercept=0, linetype="dashed", color = "black")+
geom_jitter(aes(color = Features), alpha = 0.5, width = 0.15, height = 0.2) +
stat_summary(aes(y = rating_rec, group=1), fun.data = mean_cl_boot,
geom = "errorbar", width = 0, size = 1) +
stat_summary(aes(y = rating_rec, group=1, color = outcome_valence), fun.y=mean, geom="line",
color = "black", shape = 22, size = 1, alpha = .7)+
stat_summary(aes(y = rating_rec, group=1, fill = Features), fun.y=mean, geom="point",
color = "black", shape = 22, size = 2, group=1, alpha = 1)+
stat_summary(aes(y = rating_rec,group=1), fun.y=median, geom="point", color = "black", shape = 3, size = 4,
group=1, alpha = 1, position = position_dodge(width = 0.5))+
labs(x = "Feature diagnosability", y = "Explanation Rating") +
scale_color_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
scale_fill_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
annotate("text", x = 0.5, y = 3.5, label = c("broad-scope"), angle = 90)+
annotate("text", x = 0.5, y = -3.5, label = c("narrow-scope"), angle = 90)+
theme(legend.position = "none")+
myTheme+
theme(panel.grid.major = element_line(color = "lightgrey",
size = 0.5,
linetype = 'dotted'))+
stat_summary(aes(label=round(after_stat(y),2)), fun.y=mean, geom="text", size=5,
vjust = -6)
g
ggsave("results_means_mainDV.svg",width=4,height=5)
ggsave("results_means_mainDV.pdf",width=4,height=5)
#ggsave("results_means_selection.pdf",width=11,height=5)
library(ggridges)
g2 <- ggplot(tdata_sub, aes(x = rating_rec, y = Features, fill = after_stat(x))) +
geom_density_ridges_gradient() +
#geom_density_ridges(fill = "lightblue", alpha = 0.5)+
#stat_summary(aes(x = rating_rec), fun.x=mean, geom="point",
# color = "black", shape = 22, size = 2, group=1, alpha = 1)+
scale_fill_viridis_c(name = "Explanation \nRating", option = "C")+
labs(x = "Rating", y = "Feature diagnosability") +
myTheme
g2
Use the ggplot_build package to see a table with the means and CI values plotted in the graph:
values <- ggplot_build(g)$data[[4]] # values are shown in the 4th panel
values
## x group y ymin ymax PANEL flipped_aes xmin xmax colour linewidth
## 1 1 1 -0.5 -0.8405 -0.22 1 FALSE 1 1 black 1
## 2 2 1 0.0 0.0000 0.00 1 FALSE 2 2 black 1
## linetype width alpha
## 1 1 0 NA
## 2 1 0 NA
get group medians:
library(rcompanion)
# groupwiseMean(rating_rec ~ Features + Knowledge,
# data = tdata_long,
# traditional = FALSE,
# percentile = TRUE)
groupwiseMedian(rating_rec ~ Features,
data = tdata_main,
bca = FALSE,
percentile = TRUE,
R = 1000)
## Features n Median Conf.level
## 1 feature diagnosability: \nboth similar 50 0 0.95
## 2 feature diagnosability: \nlatent feature harder 50 0 0.95
## Percentile.lower Percentile.upper
## 1 0 0
## 2 0 0
counts <- tdata_main %>%
group_by(Features, rating_rec) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
counts
## # A tibble: 7 × 5
## # Groups: Features [2]
## Features rating_rec n pct lbl
## <fct> <dbl> <int> <dbl> <chr>
## 1 "feature diagnosability: \nboth similar" -5 1 0.02 2%
## 2 "feature diagnosability: \nboth similar" -3 2 0.04 4%
## 3 "feature diagnosability: \nboth similar" -2 6 0.12 12%
## 4 "feature diagnosability: \nboth similar" -1 3 0.06 6%
## 5 "feature diagnosability: \nboth similar" 0 37 0.74 74%
## 6 "feature diagnosability: \nboth similar" 1 1 0.02 2%
## 7 "feature diagnosability: \nlatent feature harder" 0 50 1 100%
tdata_main$category[tdata_main$rating_rec < 0] <- "narrow"
tdata_main$category[tdata_main$rating_rec == 0] <- "unbiased"
tdata_main$category[tdata_main$rating_rec > 0] <- "broad"
counts2 <- tdata_main %>%
group_by(Features, category) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
counts2
## # A tibble: 4 × 5
## # Groups: Features [2]
## Features category n pct lbl
## <fct> <chr> <int> <dbl> <chr>
## 1 "feature diagnosability: \nboth similar" broad 1 0.02 2%
## 2 "feature diagnosability: \nboth similar" narrow 12 0.24 24%
## 3 "feature diagnosability: \nboth similar" unbiased 37 0.74 74%
## 4 "feature diagnosability: \nlatent feature harder" unbiased 50 1 100%
counts2$category <- factor(counts2$category, levels = c("unbiased", "narrow", "broad"), labels = c("unbiased", "narrow l.s.", "broad l.s."))
Get proportion CIs for different categories in each diagnosability condition:
library(PropCIs)
library(DescTools)
library(purrr)
counts_spear <- subset(counts2, Features == "feature diagnosability: \nboth similar")
counts_feather <- subset(counts2, Features == "feature diagnosability: \nlatent feature harder")
(MultinomCI(counts_spear$n,
conf.level=0.95,
method="sisonglaz") -> selection_ci_1)
## est lwr.ci upr.ci
## [1,] 0.02 0.00 0.1491064
## [2,] 0.24 0.14 0.3691064
## [3,] 0.74 0.64 0.8691064
(MultinomCI(counts_feather$n,
conf.level=0.95,
method="sisonglaz") -> selection_ci_2)
## est lwr.ci upr.ci
## [1,] 1 1 1
ci_low <- c(selection_ci_1[,2], selection_ci_2[,2])
ci_up <- c(selection_ci_1[,3], selection_ci_2[,3])
plotdata <- counts2
plotdata$ci_low <- ci_low
plotdata$ci_up <- ci_up
Plot:
library(scales)
theme_set(theme_light(base_size = 12, base_family = "Poppins"))
g<- ggplot(plotdata,
aes(x = category,
y = pct,
fill = Features)) +
facet_grid( ~ Features)+
geom_bar(stat = "identity",
position = "dodge") +
scale_y_continuous(limits = seq(0, 2),
breaks = seq(0, 1, .25),
expand = c(0,0),
label = percent) +
#coord_cartesian(xlim =c(1, 7), ylim = c(0, 1.1))+
#coord_cartesian(clip = "off")+
geom_text(aes(label = lbl),
size = 3.5,
position = position_dodge(width = 1),
vjust = -6.5) +
scale_fill_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
#scale_fill_brewer(palette = "Pastel1") +
labs(y = "Percentage",
fill = "Explanatory preference",
x = "Explanatory preference")+
geom_pointrange(ymin = ci_low, ymax = ci_up, position = position_dodge(width = 0.89), shape = 22, size = 0.3)+
#annotate(geom = "hline",yintercept = 0.5, y = 0.5, color = "black", size = 1, linetype='dotted')+
#annotate("pointrange", x = plotdata$Transformation, y = plotdata$pct,
# ymin = plotdata$ci_low,
# ymax = plotdata$ci_up,
# colour = "black", size = 0.8, shape = 22, fill = Transformation, fatten = 1)+
#annotate("text", x = pvalues_x, y = Inf, label = pvalues, size = 4, vjust = 1.8)+
theme(legend.position = "none", axis.title = element_text(size = 20), axis.text = element_text(size = 13, color = "black"),
legend.text = element_text(size = 13),legend.title = element_text(size = 13),strip.text.x = element_text(size = 13))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
g
#ggsave("selections_between.pdf",width=6,height=5)
ggsave("categories_main.svg",width=7,height=5)
ggsave("categories_main.pdf",width=7,height=5)
library(afex)
library(emmeans)
a1 <- aov_car(rating_rec ~ Features + Error(subj_code), tdata_main, anova_table = list(es = "pes"))
a1
## Anova Table (Type 3 tests)
##
## Response: rating_rec
## Effect df MSE F pes p.value
## 1 Features 1, 98 0.60 10.47 ** .097 .002
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
t.test(rating_rec ~ Features, data = tdata_main, var.equal = F, alternative = "two.sided", paired = F) # two sided is used here to get the full confidence interval of the difference; note, however, that the hypothesis was a directed one (thus, alternative = "less" could have been used to get the one-sided p-value).
##
## Welch Two Sample t-test
##
## data: rating_rec by Features
## t = -3.2358, df = 49, p-value = 0.002177
## alternative hypothesis: true difference in means between group feature diagnosability:
## both similar and group feature diagnosability:
## latent feature harder is not equal to 0
## 95 percent confidence interval:
## -0.8105269 -0.1894731
## sample estimates:
## mean in group feature diagnosability: \nboth similar
## -0.5
## mean in group feature diagnosability: \nlatent feature harder
## 0.0
Test if proportion of unbiased subjects is higher in “latent feature harder” than in “feature diagnosability: similar”
unbiased_props <- prop.test(x = c(counts2$n[3], counts2$n[4]), n = c(50, 50), alternative = "less", correct = F)
unbiased_props
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(counts2$n[3], counts2$n[4]) out of c(50, 50)
## X-squared = 14.943, df = 1, p-value = 5.542e-05
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.000000 -0.157966
## sample estimates:
## prop 1 prop 2
## 0.74 1.00
this part of the analysis script reports an analysis that includes the additional between-subjects conditions in which the latent feature was not mentioned in the test case description.
myTheme <- theme(plot.title = element_text(face="bold", size = 22),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
axis.text.x = element_text(size = 14, angle = 0),
axis.text.y = element_text(size = 16, angle = 0),
legend.text = element_text(size = 18),
legend.title = element_text(face = "bold", size = 18),
strip.text.x = element_text(size = 18),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line.x = element_line(colour = "black"),
axis.line.y = element_line(colour = "black"),
axis.text = element_text(colour ="black"),
axis.ticks = element_line(colour ="black"))
tdata_sub <- tdata_long
library(see)
## first, turn sID into a factor
tdata_sub$subj_code <- factor(tdata_sub$subj_code)
pd <- position_dodge(width = 0.3)
tdata_sub$valueJitter <- jitter(tdata_sub$rating_rec, factor = 0.01, amount = 0.004)
theme_set(theme_light(base_size = 20, base_family = "Poppins"))
# new labes for the facets
g <- ggplot(tdata_sub, aes(x = Features, y = valueJitter)) +
guides(fill=FALSE)+
facet_grid( ~ Knowledge)+
#ggtitle("Subjects' causal srength ratings") +
scale_y_continuous(limits = c(-5.3, 5.3), breaks=seq(-5, 5, 1), expand = c(0,0)) +
scale_x_discrete(labels=c("feature diagnosability: \nboth similar", "feature diagnosability: \nlatent feature harder")) +
#stat_summary(fun.y = mean, geom = "bar", position = "dodge", colour = "black", alpha =0.5) +
geom_violinhalf(aes(y = rating_rec, group = Features, fill = Features), color = NA,
position=position_dodge(1), alpha = 0.4)+
#geom_line(position = pd, color = "black", size = 1, alpha=0.04) +
geom_hline(yintercept=0, linetype="dashed", color = "black")+
geom_jitter(aes(color = Features), alpha = 0.5, width = 0.15, height = 0.2) +
stat_summary(aes(y = rating_rec, group=1), fun.data = mean_cl_boot,
geom = "errorbar", width = 0, size = 1) +
stat_summary(aes(y = rating_rec, group=1, fill = Features), fun.y=mean, geom="point",
color = "black", shape = 22, size = 2, group=1, alpha = 1)+
stat_summary(aes(y = rating_rec,group=1), fun.y=median, geom="point", color = "black", shape = 3, size = 4,
group=1, alpha = 1, position = position_dodge(width = 0.5))+
labs(x = "Category Features", y = "Categorization Rating") +
scale_color_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
scale_fill_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
annotate("text", x = 0.5, y = 3.5, label = c("broad-scope"), angle = 90)+
annotate("text", x = 0.5, y = -3.5, label = c("narrow-scope"), angle = 90)+
theme(legend.position = "none")+
myTheme+
theme(panel.grid.major = element_line(color = "lightgrey",
size = 0.5,
linetype = 'dotted'))+
stat_summary(aes(label=round(after_stat(y),2)), fun.y=mean, geom="text", size=5,
vjust = -6)
g
#ggsave("results_means_mainDV.svg",width=7,height=5)
#ggsave("results_means_mainDV.pdf",width=7,height=5)
#ggsave("results_means_selection.pdf",width=11,height=5)
Use the ggplot_build package to see a table with the means and CI values plotted in the graph:
values <- ggplot_build(g)$data[[4]] # values are shown in the 4th panel
values
## x group y ymin ymax PANEL flipped_aes xmin xmax colour linewidth
## 1 1 1 -0.50 -0.8200 -0.22 1 FALSE 1 1 black 1
## 2 2 1 0.00 0.0000 0.00 1 FALSE 2 2 black 1
## 3 1 1 -1.38 -1.9005 -0.82 2 FALSE 1 1 black 1
## 4 2 1 -0.16 -0.4800 0.14 2 FALSE 2 2 black 1
## linetype width alpha
## 1 1 0 NA
## 2 1 0 NA
## 3 1 0 NA
## 4 1 0 NA
get group medians:
library(rcompanion)
# groupwiseMean(rating_rec ~ Features + Knowledge,
# data = tdata_long,
# traditional = FALSE,
# percentile = TRUE)
groupwiseMedian(rating_rec ~ Features + Knowledge,
data = tdata_long,
bca = FALSE,
percentile = TRUE,
R = 1000)
## Features Knowledge n Median
## 1 feature diagnosability: \nboth similar 'you don't know' 50 0
## 2 feature diagnosability: \nboth similar no information 50 0
## 3 feature diagnosability: \nlatent feature harder 'you don't know' 50 0
## 4 feature diagnosability: \nlatent feature harder no information 50 0
## Conf.level Percentile.lower Percentile.upper
## 1 0.95 0.0 0
## 2 0.95 -0.5 0
## 3 0.95 0.0 0
## 4 0.95 0.0 0
counts <- tdata_long %>%
group_by(Features, Knowledge, rating_rec) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
counts
## # A tibble: 19 × 6
## # Groups: Features, Knowledge [4]
## Features Knowledge rating_rec n pct lbl
## <fct> <fct> <dbl> <int> <dbl> <chr>
## 1 "feature diagnosability: \nboth simil… 'you don… -5 1 0.02 2%
## 2 "feature diagnosability: \nboth simil… 'you don… -3 2 0.04 4%
## 3 "feature diagnosability: \nboth simil… 'you don… -2 6 0.12 12%
## 4 "feature diagnosability: \nboth simil… 'you don… -1 3 0.06 6%
## 5 "feature diagnosability: \nboth simil… 'you don… 0 37 0.74 74%
## 6 "feature diagnosability: \nboth simil… 'you don… 1 1 0.02 2%
## 7 "feature diagnosability: \nboth simil… no infor… -5 9 0.18 18%
## 8 "feature diagnosability: \nboth simil… no infor… -4 2 0.04 4%
## 9 "feature diagnosability: \nboth simil… no infor… -3 3 0.06 6%
## 10 "feature diagnosability: \nboth simil… no infor… -2 3 0.06 6%
## 11 "feature diagnosability: \nboth simil… no infor… -1 1 0.02 2%
## 12 "feature diagnosability: \nboth simil… no infor… 0 32 0.64 64%
## 13 "feature diagnosability: \nlatent fea… 'you don… 0 50 1 100%
## 14 "feature diagnosability: \nlatent fea… no infor… -5 1 0.02 2%
## 15 "feature diagnosability: \nlatent fea… no infor… -3 1 0.02 2%
## 16 "feature diagnosability: \nlatent fea… no infor… -2 2 0.04 4%
## 17 "feature diagnosability: \nlatent fea… no infor… -1 1 0.02 2%
## 18 "feature diagnosability: \nlatent fea… no infor… 0 44 0.88 88%
## 19 "feature diagnosability: \nlatent fea… no infor… 5 1 0.02 2%
counts <- tdata_long %>%
group_by(Features, Knowledge, rating_rec) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
counts
## # A tibble: 19 × 6
## # Groups: Features, Knowledge [4]
## Features Knowledge rating_rec n pct lbl
## <fct> <fct> <dbl> <int> <dbl> <chr>
## 1 "feature diagnosability: \nboth simil… 'you don… -5 1 0.02 2%
## 2 "feature diagnosability: \nboth simil… 'you don… -3 2 0.04 4%
## 3 "feature diagnosability: \nboth simil… 'you don… -2 6 0.12 12%
## 4 "feature diagnosability: \nboth simil… 'you don… -1 3 0.06 6%
## 5 "feature diagnosability: \nboth simil… 'you don… 0 37 0.74 74%
## 6 "feature diagnosability: \nboth simil… 'you don… 1 1 0.02 2%
## 7 "feature diagnosability: \nboth simil… no infor… -5 9 0.18 18%
## 8 "feature diagnosability: \nboth simil… no infor… -4 2 0.04 4%
## 9 "feature diagnosability: \nboth simil… no infor… -3 3 0.06 6%
## 10 "feature diagnosability: \nboth simil… no infor… -2 3 0.06 6%
## 11 "feature diagnosability: \nboth simil… no infor… -1 1 0.02 2%
## 12 "feature diagnosability: \nboth simil… no infor… 0 32 0.64 64%
## 13 "feature diagnosability: \nlatent fea… 'you don… 0 50 1 100%
## 14 "feature diagnosability: \nlatent fea… no infor… -5 1 0.02 2%
## 15 "feature diagnosability: \nlatent fea… no infor… -3 1 0.02 2%
## 16 "feature diagnosability: \nlatent fea… no infor… -2 2 0.04 4%
## 17 "feature diagnosability: \nlatent fea… no infor… -1 1 0.02 2%
## 18 "feature diagnosability: \nlatent fea… no infor… 0 44 0.88 88%
## 19 "feature diagnosability: \nlatent fea… no infor… 5 1 0.02 2%
tdata_long$category[tdata_long$rating_rec < 0] <- "narrow"
tdata_long$category[tdata_long$rating_rec == 0] <- "unbiased"
tdata_long$category[tdata_long$rating_rec > 0] <- "broad"
counts2 <- tdata_long %>%
group_by(Features, Knowledge, category) %>%
summarize(n = n()) %>%
mutate(pct = n/sum(n),
lbl = scales::percent(pct))
counts2
## # A tibble: 9 × 6
## # Groups: Features, Knowledge [4]
## Features Knowledge category n pct lbl
## <fct> <fct> <chr> <int> <dbl> <chr>
## 1 "feature diagnosability: \nboth similar" 'you don… broad 1 0.02 2%
## 2 "feature diagnosability: \nboth similar" 'you don… narrow 12 0.24 24%
## 3 "feature diagnosability: \nboth similar" 'you don… unbiased 37 0.74 74%
## 4 "feature diagnosability: \nboth similar" no infor… narrow 18 0.36 36%
## 5 "feature diagnosability: \nboth similar" no infor… unbiased 32 0.64 64%
## 6 "feature diagnosability: \nlatent featur… 'you don… unbiased 50 1 100%
## 7 "feature diagnosability: \nlatent featur… no infor… broad 1 0.02 2%
## 8 "feature diagnosability: \nlatent featur… no infor… narrow 5 0.1 10%
## 9 "feature diagnosability: \nlatent featur… no infor… unbiased 44 0.88 88%
counts2$category <- factor(counts2$category, levels = c("unbiased", "narrow", "broad"), labels = c("unbiased", "narrow l.s.", "broad l.s."))
Get proportion CIs for different categories in each diagnosability condition:
library(PropCIs)
library(DescTools)
library(purrr)
counts_spear_notknow <- subset(counts2, Features == "feature diagnosability: \nboth similar" & Knowledge == "'you don't know'")
counts_spear_noinf <- subset(counts2, Features == "feature diagnosability: \nboth similar" & Knowledge == "no information")
counts_feather_notknow <- subset(counts2, Features == "feature diagnosability: \nlatent feature harder" & Knowledge == "'you don't know'")
counts_feather_noinf <- subset(counts2, Features == "feature diagnosability: \nlatent feature harder" & Knowledge == "no information")
(MultinomCI(counts_spear_notknow$n,
conf.level=0.95,
method="wald") -> selection_ci_1)
## est lwr.ci upr.ci
## [1,] 0.02 0.0000000 0.05880531
## [2,] 0.24 0.1216208 0.35837923
## [3,] 0.74 0.6184190 0.86158098
(MultinomCI(counts_spear_noinf$n,
conf.level=0.95,
method="wald") -> selection_ci_2)
## est lwr.ci upr.ci
## [1,] 0.36 0.2269532 0.4930468
## [2,] 0.64 0.5069532 0.7730468
(MultinomCI(counts_feather_notknow$n,
conf.level=0.95,
method="wald") -> selection_ci_3)
## est lwr.ci upr.ci
## [1,] 1 1 1
(MultinomCI(counts_feather_noinf$n,
conf.level=0.95,
method="wald") -> selection_ci_4)
## est lwr.ci upr.ci
## [1,] 0.02 0.00000000 0.05880531
## [2,] 0.10 0.01684577 0.18315423
## [3,] 0.88 0.78992691 0.97007309
ci_low <- c(selection_ci_1[,2], selection_ci_2[,2], selection_ci_3[,2], selection_ci_4[,2])
ci_up <- c(selection_ci_1[,3], selection_ci_2[,3], selection_ci_3[,3], selection_ci_4[,3])
plotdata <- counts2
plotdata$ci_low <- ci_low
plotdata$ci_up <- ci_up
Plot:
library(scales)
theme_set(theme_light(base_size = 12, base_family = "Poppins"))
g<- ggplot(plotdata,
aes(x = category,
y = pct,
fill = Features)) +
facet_grid(Features ~ Knowledge)+
geom_bar(stat = "identity",
position = "dodge") +
scale_y_continuous(limits = seq(0, 2),
breaks = seq(0, 1, .25),
expand = c(0,0),
label = percent) +
#coord_cartesian(xlim =c(1, 7), ylim = c(0, 1.1))+
#coord_cartesian(clip = "off")+
geom_text(aes(label = lbl),
size = 3.5,
position = position_dodge(width = 1),
vjust = -3.5) +
scale_fill_manual(name = "Strength",values=c("#66c2a5", "#e78ac3", "#8da0cb", "#a6d854"))+
#scale_fill_brewer(palette = "Pastel1") +
labs(y = "Percentage",
fill = "Explanatory preference",
x = "Explanatory preference")+
geom_pointrange(ymin = ci_low, ymax = ci_up, position = position_dodge(width = 0.89), shape = 22, size = 0.3)+
#annotate(geom = "hline",yintercept = 0.5, y = 0.5, color = "black", size = 1, linetype='dotted')+
#annotate("pointrange", x = plotdata$Transformation, y = plotdata$pct,
# ymin = plotdata$ci_low,
# ymax = plotdata$ci_up,
# colour = "black", size = 0.8, shape = 22, fill = Transformation, fatten = 1)+
#annotate("text", x = pvalues_x, y = Inf, label = pvalues, size = 4, vjust = 1.8)+
theme(legend.position = "none", axis.title = element_text(size = 20), axis.text = element_text(size = 13, color = "black"),
legend.text = element_text(size = 13),legend.title = element_text(size = 13),strip.text.x = element_text(size = 13))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
g
#ggsave("selections_between.pdf",width=6,height=5)
#ggsave("categories.svg",width=7,height=5)
#ggsave("categories.pdf",width=7,height=5)
library(afex)
library(emmeans)
a1 <- aov_car(rating_rec ~ Features*Knowledge + Error(subj_code), tdata_long, anova_table = list(es = "pes"))
a1
## Anova Table (Type 3 tests)
##
## Response: rating_rec
## Effect df MSE F pes p.value
## 1 Features 1, 196 1.67 22.17 *** .102 <.001
## 2 Knowledge 1, 196 1.67 8.10 ** .040 .005
## 3 Features:Knowledge 1, 196 1.67 3.88 + .019 .050
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
more digits for the p.values can be obtained by running model comparisons manually.
###############
# a follow-up analysis
library(lsmeans)
# means
ls2 <- lsmeans(a1, c("Features", "Knowledge")) # group means by between-condition
ls2
## Features Knowledge lsmean SE
## feature diagnosability: \nboth similar 'you don't know' -0.50 0.183
## feature diagnosability: \nlatent feature harder 'you don't know' 0.00 0.183
## feature diagnosability: \nboth similar no information -1.38 0.183
## feature diagnosability: \nlatent feature harder no information -0.16 0.183
## df lower.CL upper.CL
## 196 -0.86 -0.14
## 196 -0.36 0.36
## 196 -1.74 -1.02
## 196 -0.52 0.20
##
## Confidence level used: 0.95
# contrast the strength levels (main effect; averaging over decision level, as there was no sig. interaction)
contrasts <- emmeans(a1, ~ Features*Knowledge)
s <- pairs(contrasts, adjust = "none")
s
## contrast
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nlatent feature harder 'you don't know'
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nboth similar no information
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nlatent feature harder no information
## feature diagnosability: \nlatent feature harder 'you don't know' - feature diagnosability: \nboth similar no information
## feature diagnosability: \nlatent feature harder 'you don't know' - feature diagnosability: \nlatent feature harder no information
## feature diagnosability: \nboth similar no information - feature diagnosability: \nlatent feature harder no information
## estimate SE df t.ratio p.value
## -0.50 0.258 196 -1.936 0.0544
## 0.88 0.258 196 3.406 0.0008
## -0.34 0.258 196 -1.316 0.1897
## 1.38 0.258 196 5.342 <.0001
## 0.16 0.258 196 0.619 0.5364
## -1.22 0.258 196 -4.723 <.0001
confint(s, level = 0.95)
## contrast
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nlatent feature harder 'you don't know'
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nboth similar no information
## feature diagnosability: \nboth similar 'you don't know' - feature diagnosability: \nlatent feature harder no information
## feature diagnosability: \nlatent feature harder 'you don't know' - feature diagnosability: \nboth similar no information
## feature diagnosability: \nlatent feature harder 'you don't know' - feature diagnosability: \nlatent feature harder no information
## feature diagnosability: \nboth similar no information - feature diagnosability: \nlatent feature harder no information
## estimate SE df lower.CL upper.CL
## -0.50 0.258 196 -1.009 0.00946
## 0.88 0.258 196 0.371 1.38946
## -0.34 0.258 196 -0.849 0.16946
## 1.38 0.258 196 0.871 1.88946
## 0.16 0.258 196 -0.349 0.66946
## -1.22 0.258 196 -1.729 -0.71054
##
## Confidence level used: 0.95
This additional condition provides additional evidence that subjects
pragmatically rely on the presented information to try to infer the
status of the latent feature. Here, subjects who read the
spear-net'' scenario showed the most pronounced latent-scope bias ($M~= -1.38$, 95\% CI [$-1.96, -0.84$], Median~=$0$). This was predicted because it is reasonable to assume that a situation in which one feature (the net) that should be just as easily observable as another (the spear) isn't mentioned at all is more likely to happen in a world in which that feature is actually absent. A contrast analysis (comparison of green graphs in Fig.~\ref{fig:Exp_tokoloCont_res}) showed that the latent scope bias in this condition was larger than in the corresponding spear-net condition that used the
you
don’t know’’ phrasing (\(\Delta M~=
-0.88\), \(t\)(196)~\(= 3.41\), \(p~< .001\)). However, even here 32
subjects (64%) still weren’t biased. Furthermore, as predicted, in the
no information condition'' in which subjects saw the
feather-tooth’’
scenario not mentioning the latent feature at all had less pragmatic
influence. In this condition, 44 subjects (88%) gave unbiased ratings,
and only five (10%) gave ratings indicating a latent-scope bias (\(M~= -0.16\), 95% CI [\(-0.48, 0.16\)], Median~=\(0\)). The observed pattern in this
condition suggests that not mentioning the status of a feature that is
anyway expected to be unobserved is regarded as less diagnostic for a
situation in which that feature is actually absent.
One should also compare the observed behavior proportions with those that were observed under the forced-choice response format test context that was used in the previous experiment. This will be done here.
First, create an object that contains the results of the previous (forced-choice) study.
Study <- c(rep("Forced",4))
Features <- c("feature diagnosability: \nboth similar", "feature diagnosability: \nboth similar", "feature diagnosability: \nlatent feature harder", "feature diagnosability: \nlatent feature harder")
category <- c("narrow l.s.", "broad l.s.", "narrow l.s.", "broad l.s.") # note that "unbiased" is actually not a reasonable category here as subjects had to choose one explanation (this was included here only for the sake of comparability with the continuous scale experiment)
n <- c(32,8,37,3)
pct <- c(0.80,0.20,0.925,0.075)
lbl <- c("80%", "20%", "92%", "8%")
props_expForced <- data.frame(Features, category, n, pct, lbl, Study)
Now take the proportions of the current study (but include only the relevant “You don’t know” condition)
props_contScale <- subset(counts2, Knowledge == "'you don't know'")
props_contScale <- subset(props_contScale, select = c(1,3:6))
props_contScale$Study <- c("Scale")
inter_exp_probs <- rbind(props_expForced, props_contScale)
biased_props_spear_net <- prop.test(x = c(inter_exp_probs$n[6], inter_exp_probs$n[1]), n = c(50, 40), alternative = "less", correct = F)
biased_props_spear_net
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(inter_exp_probs$n[6], inter_exp_probs$n[1]) out of c(50, 40)
## X-squared = 27.889, df = 1, p-value = 6.423e-08
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.0000000 -0.4161529
## sample estimates:
## prop 1 prop 2
## 0.24 0.80
biased_props_feather_tooth <- prop.test(x = c(0, inter_exp_probs$n[3]), n = c(50, 40), alternative = "less", correct = F)
biased_props_feather_tooth
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(0, inter_exp_probs$n[3]) out of c(50, 40)
## X-squared = 78.538, df = 1, p-value < 2.2e-16
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.0000000 -0.8564987
## sample estimates:
## prop 1 prop 2
## 0.000 0.925