tdata <- read.delim("data.txt", header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

Results

Demographics

# demographics 

tdata_age <- tdata 

min(tdata_age$Age)
## [1] 18
max(tdata_age$Age)
## [1] 71
mean(tdata_age$Age)
## [1] 34.31034
sd(tdata_age$Age)
## [1] 14.14997
# 1 = male, 2 = female, 3 = other
table(tdata$Sex)
## 
##  1  2  4 
## 14 14  1

1 = male, 2 = female, 3 = non-binary

Graphs

myTheme <- theme(plot.title = element_text(face="bold", size = 22),
        axis.title.x = element_blank(),
        axis.title.y = element_text(face = "bold", size = 20),
        axis.text.x = element_text(size = 18, angle = 0), 
        axis.text.y = element_text(size = 16, angle = 0),
        legend.text = element_text(size = 18),
        legend.title = element_text(face = "bold", size = 18),
        strip.text.x = element_text(size = 18),
        #panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        panel.background = element_blank(), 
        axis.line.x = element_line(colour = "black"), 
        axis.line.y = element_line(colour = "black"),
        axis.text = element_text(colour ="black"), 
        axis.ticks = element_line(colour ="black"))

tdata_sub <- tdata_long


library(see)
## first, turn sID into a factor
tdata_sub$sID <- factor(tdata_sub$sID)

pd <- position_dodge(width = 0.3)

tdata_sub$valueJitter <- jitter(tdata_sub$value, factor = 1, amount = 0.04)

theme_set(theme_light(base_size = 20, base_family = "Poppins"))

# new labes for the facets 

g <- ggplot(tdata_sub, aes(x=variable, y=valueJitter, group = sID)) +
  guides(fill=FALSE)+
  #facet_grid(Query_order ~ Cause_order)+
  #ggtitle("Subjects' causal srength ratings") +
  scale_y_continuous(limits = c(-0.05, 1.05), breaks=seq(0, 1, 0.1), expand = c(0,0)) +
  scale_x_discrete(labels=c("Single-effect \ncause", "Common \ncause", "No \ncause")) +
  #stat_summary(fun.y = mean, geom = "bar", position = "dodge", colour = "black", alpha =0.5) +
  geom_violinhalf(aes(y = value, group = variable, fill = variable), color = NA, position=position_dodge(1), alpha = 0.2)+
  geom_line(position = pd, color = "black", size = 1, alpha=0.04) +
  geom_point(aes(color = variable), position = pd, alpha = 0.2) +
  stat_summary(aes(y = value,group=1), fun.data = mean_cl_boot, geom = "errorbar", width = 0, size = 1) +
  stat_summary(aes(y = value,group=1), fun.y=mean, colour="black", geom="line",group=1, size = 1.5, linetype = "solid", alpha = 1)+
  stat_summary(aes(y = value,group=1, fill = variable), fun.y=mean, geom="point", color = "black", shape = 22, size = 5, group=1, alpha = 1)+
  stat_summary(aes(y = value,group=1), fun.y=median, geom="point", color = "black", shape = 3, size = 4, group=1, alpha = 1, position = position_dodge(width = 0.5))+
  labs(x = "Number Cause's Effects", y = "Causal Strength Rating") +
  #scale_color_manual(name = "Entity",values=c("#fc9272", "#3182bd"))+
  #scale_fill_manual(name = "Entity",values=c("#fc9272", "#3182bd"))+
  theme(legend.position = "none")+
  myTheme
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## Warning: `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.
g

#ggsave("results_lines.svg",width=6,height=4.3)
#ggsave("results_lines.pdf",width=6,height=4.3)

Descriptive Stats

## : SC
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   1.00000000   0.95586207   0.02562287   0.05248606   0.01903941   0.13798336 
##     coef.var 
##   0.14435489 
## ------------------------------------------------------------ 
## : CC
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.99000000   0.94586207   0.02619798   0.05366413   0.01990369   0.14108045 
##     coef.var 
##   0.14915542 
## ------------------------------------------------------------ 
## : NC
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
## 0.0000000000 0.0048275862 0.0025120738 0.0051457499 0.0001830049 0.0135279313 
##     coef.var 
## 2.8022143472
library(afex)
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - NEWS: emmeans() for ANOVA models now uses model = 'multivariate' as default.
## - Get and set global package options with: afex_options()
## - Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attache Paket: 'afex'
## Das folgende Objekt ist maskiert 'package:lme4':
## 
##     lmer
library(emmeans)

a1 <- aov_car(value ~ variable + Error(sID/(variable)), tdata_sub)
a1
## Anova Table (Type 3 tests)
## 
## Response: value
##     Effect          df  MSE          F  ges p.value
## 1 variable 1.68, 47.09 0.02 664.72 *** .940   <.001
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
## 
## Sphericity correction method: GG

Sign. Effect of “Variable” most likely due to the “non-cause” condition (see graph).

# same ANOVA as before
lmeModel <- lmer(value ~ variable + (1|sID), data=tdata_sub)

# follow-up analysis to get means and CIs

ls1 <- lsmeans(a1, c("variable")) # joint evaluation (basically gives the same table)
ls1
##  variable  lsmean      SE df  lower.CL upper.CL
##  SC       0.95586 0.02562 28  0.903376  1.00835
##  CC       0.94586 0.02620 28  0.892198  0.99953
##  NC       0.00483 0.00251 28 -0.000318  0.00997
## 
## Confidence level used: 0.95
############### 
# a conditional analysis 

ls2 <- lsmeans(a1, c("variable")) # group means by between-condition
ls2
##  variable  lsmean      SE df  lower.CL upper.CL
##  SC       0.95586 0.02562 28  0.903376  1.00835
##  CC       0.94586 0.02620 28  0.892198  0.99953
##  NC       0.00483 0.00251 28 -0.000318  0.00997
## 
## Confidence level used: 0.95
# simple main effects 
t <- pairs(ls2) # compares rep-measure differences separately for each between-factor level
t
##  contrast estimate     SE df t.ratio p.value
##  SC - CC     0.010 0.0359 28   0.279  0.9582
##  SC - NC     0.951 0.0265 28  35.906  <.0001
##  CC - NC     0.941 0.0265 28  35.485  <.0001
## 
## P value adjustment: tukey method for comparing a family of 3 estimates
confint(t, level = 0.95)
##  contrast estimate     SE df lower.CL upper.CL
##  SC - CC     0.010 0.0359 28  -0.0788   0.0988
##  SC - NC     0.951 0.0265 28   0.8855   1.0166
##  CC - NC     0.941 0.0265 28   0.8754   1.0067
## 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

No dilution

Make a difference plot:

#t <- qt(0.975, 29, lower.tail = TRUE, log.p = FALSE)
#t

effect <- "Mdiff"
Mdiff <- 0.010
CI_low <- -0.0621
CI_up <- 0.0821

Mdiff
## [1] 0.01
CI_low
## [1] -0.0621
CI_up
## [1] 0.0821
# Plot 

myTheme <- theme(plot.title = element_text(face="bold", size = 22),
        axis.title.x = element_text(face = "bold", size = 20),
        axis.title.y = element_blank(),
        axis.text.x = element_text(size = 18, angle = 0), 
        axis.text.y = element_text(size = 40, angle = 0),
        legend.text = element_text(size = 18),
        legend.title = element_text(size = 22),
        strip.text.x = element_text(size = 18),
        #panel.grid.major = element_blank(), 
        #panel.grid.minor = element_blank(), 
        #panel.background = element_blank(), 
        axis.line.x = element_line(colour = "black"), 
        axis.line.y = element_line(colour = "black"),
        axis.text = element_text(colour ="black"), 
        axis.ticks = element_line(colour ="black"))

theme_set(theme_light(base_size = 30, base_family = "Poppins"))



barchart <- ggplot()+
  myTheme+
  #guides(fill=FALSE)+
  #facet_wrap(~Latency + SampleSize, ncol=2)+
  #ggtitle("Mean difference (95% CI)") +
  #coord_cartesian(ylim=c(-0.1,2)) + 
  scale_y_continuous(limits = c(-0.1, 0.5), breaks=seq(-0.1, 0.5, 0.1), expand = c(0,0)) +
  scale_x_discrete(labels=c("r")) +
  #annotate("rect", xmin=1.7, xmax=2.3, ymin=0.95, ymax=1.05, color="#31a354", fill = "white", size = 1) +
  #stat_summary(fun.y=mean, colour="grey20", geom="point", shape = 21, size = 3)+
  #stat_summary(fun.y = mean, geom = "bar", position = "dodge", colour = "black")+
  #stat_summary(fun.data = mean_cl_boot, geom = "errorbar", position = position_dodge(width = 0.90), width = 0.2) +
  #geom_jitter(width = 0.3, height = 0.02, alpha = 0.6, colour = "red") +
  #ggtitle("Means (95% bootstr. CIs)") +
  #theme(axis.text.x = element_text(size = 10, angle = 0, hjust = 0.5))+
  labs(x= "", y = "Mean change") +
  #scale_color_manual(values=c("#005083",  "#f0b64d"))# +
  #scale_fill_manual(values=c("#969696",  "#969696"))
  #annotate("point", x = 1, y = 100, colour = "firebrick", size = 2)+
  #annotate(xmin = -Inf, xmax = Inf, ymin = 4.77-1.96*0.297, ymax = 4.77+1.96*0.297, geom = "rect", alpha = 0.2, fill = "firebrick")+
  #annotate(xmin = -Inf, xmax = Inf, ymin = 5.02-1.96*0.372, ymax = 5.02+1.96*0.372, geom = "rect", alpha = 0.2, fill = "blue")+
  #annotate(geom = "hline",yintercept = 100, y = 100, color = "red")+
  annotate("pointrange", x = 1, y = Mdiff, ymin = CI_low, ymax = CI_up, colour = "black", size = 2, shape = 24, fill = "darkgrey")+
  #annotate("pointrange", x = 2, y = 5.02, ymin = 5.02-1.96*0.372, ymax = 5.02+1.96*0.372, colour = "blue", size = 0.8, shape = 15)+
  #annotate("text", x = 0.5, y = 2.6, family = "Poppins", size = 6, color = "gray20", label = "Impfeffekt")+
  #geom_curve(aes(x = 0.5, y = 3, xend = 0.9, yend = 4),arrow = arrow(length = unit(0.03, "npc")),color = "gray20", curvature = +0.2)+
  #annotate("text", x = 1.8, y = 2.6, family = "Poppins", size = 6, color = "gray20", label = "Dosierungseffekt")+
  #geom_curve(aes(x = 1.8, y = 3, xend = 2, yend = 4),arrow = arrow(length = unit(0.03, "npc")),color = "gray20", curvature = +0.2)+
  annotate(geom = "hline",yintercept = 0, y = 0, color = "red", size = 1.2)+
  theme(plot.background = element_rect(
    fill = "white",
    colour = "white",
    size = 1
  ))
## Warning: Ignoring unknown aesthetics: y
barchart

#ggsave("delta.svg",width=2.5,height=4)
#ggsave("delta.pdf",width=2.5,height=4)

What Cohen’s d is this?

dat <- tdata_sub


# since we have a repeated-meausres design, we now need the correlations of the ratings
library(dplyr) # for pipe operator
tdata -> t
r <- cor(t$single_strength_rating, t$multiple_strength_rating)
r
## [1] 0.0407351
# now compute ES and SE and CI of it
# using the esc package because it gives SE of the ES directly
library(esc)

# get means and sds
m1 <- dat %>%
          filter(variable == "SC")%>%
          summarize(Mean1 = mean(value))

sd1 <- dat %>%
          filter(variable == "SC")%>%
          summarize(SD1 = sd(value))


m2 <- dat %>%
          filter(variable == "CC")%>%
          summarize(Mean2 = mean(value))

sd2 <- dat %>%
          filter(variable == "CC")%>%
          summarize(SD2 = sd(value))



d <- esc_mean_sd(
  grp1m = m1[,1], grp1sd = sd1[,1], grp1n = length(dat$sID)/3,
  grp2m = m2[,1], grp2sd = sd2[,1], grp2n = length(dat$sID)/3,
  r = r,
  es.type = "d"
)
d
## 
## Effect Size Calculation for Meta Analysis
## 
##      Conversion: mean and sd (within-subject) to effect size d
##     Effect Size:   0.0517
##  Standard Error:   0.2627
##        Variance:   0.0690
##        Lower CI:  -0.4631
##        Upper CI:   0.5665
##          Weight:  14.4951
d$ci.lo
## [1] -0.4630594
d$ci.hi
## [1] 0.5665363
d_ci <- (d$ci.hi - d$ci.lo)/2
d_ci
## [1] 0.5147979
# How many subjects would we need to make the ci-width small enough?

d <- esc_mean_sd(
  grp1m = m1[,1], grp1sd = sd1[,1], grp1n = 216,
  grp2m = m2[,1], grp2sd = sd2[,1], grp2n = 216,
  r = r,
  es.type = "d"
)
d
## 
## Effect Size Calculation for Meta Analysis
## 
##      Conversion: mean and sd (within-subject) to effect size d
##     Effect Size:   0.0517
##  Standard Error:   0.0962
##        Variance:   0.0093
##        Lower CI:  -0.1369
##        Upper CI:   0.2404
##          Weight: 107.9639
d_ci <- (d$ci.hi - d$ci.lo)/2
d_ci
## [1] 0.1886292