# data file needs to be in the same directory as the R-Markdown-Script
library(readr)
tdata <- read_delim("tdata_final.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE)
## Rows: 122 Columns: 12
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (7): subj_code, desktop_conf, attent_conf, Cond_sum, explanation, gender...
## dbl (5): condition, instr_tests, Rating_CC, Rating_SE, age
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1 Results

1.1 Demographics

# demographics 

min(tdata$age)
## [1] 19
max(tdata$age)
## [1] 76
mean(tdata$age)
## [1] 38.7377
sd(tdata$age)
## [1] 12.82676
# 1 = male, 2 = female, 3 = other
table(tdata$gender)
## 
##   1: male 2: female 
##        46        76

1 = male, 2 = female, 3 = non-binary

2 Graphs

## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## Warning: `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.

3 binary and continuous seperate

binary <- subset(tdata_long, Cond_sum == "binary_raidal" | Cond_sum == "binary_channel")
binary$Cond_sum <- factor(binary$Cond_sum, levels = c("binary_channel","binary_raidal"), labels = c("binary & channel", "binary & radial"))

continuous <- subset(tdata_long, Cond_sum != "binary_raidal" & Cond_sum != "binary_channel")

continuous$Cond_sum <- factor(continuous$Cond_sum, 
                              levels = c("cont_channel_limited", "cont_channel_ulimited", "cont_radial_limited", "cont_radial_unlimited"),
                              labels = c("channel & limited", "channel & unlimited", "radial & limited", "radial & unlimited"))
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## Warning: `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.

## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## Warning: `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.
## `fun.y` is deprecated. Use `fun` instead.

4 append additional factors

continuous$transmission[continuous$Cond_sum == "channel & unlimited" | continuous$Cond_sum == "channel & limited"] <- "channel"
## Warning: Unknown or uninitialised column: `transmission`.
continuous$transmission[continuous$Cond_sum == "radial & unlimited" | continuous$Cond_sum == "radial & limited"] <- "radial"

continuous$energy[continuous$Cond_sum == "channel & unlimited" | continuous$Cond_sum == "radial & unlimited"] <- "unlimited"
## Warning: Unknown or uninitialised column: `energy`.
continuous$energy[continuous$Cond_sum == "channel & limited" | continuous$Cond_sum == "radial & limited"] <- "specific"
binary$transmission[binary$Cond_sum == "binary & channel"] <- "channel"
## Warning: Unknown or uninitialised column: `transmission`.
binary$transmission[binary$Cond_sum == "binary & radial"] <- "radial"

5 Descriptive Stats

## : Rating_SE
## : channel
## : specific
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   1.00000000   0.93000000   0.02523573   0.05281899   0.01273684   0.11285762 
##     coef.var 
##   0.12135228 
## ------------------------------------------------------------ 
## : Rating_CC
## : channel
## : specific
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##    0.2500000    0.2750000    0.0250000    0.0523256    0.0125000    0.1118034 
##     coef.var 
##    0.4065578 
## ------------------------------------------------------------ 
## : Rating_SE
## : radial
## : specific
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.80000000   0.70952381   0.06283189   0.13106502   0.08290476   0.28793187 
##     coef.var 
##   0.40581002 
## ------------------------------------------------------------ 
## : Rating_CC
## : radial
## : specific
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.40000000   0.44285714   0.04759523   0.09928191   0.04757143   0.21810875 
##     coef.var 
##   0.49250364 
## ------------------------------------------------------------ 
## : Rating_SE
## : channel
## : unlimited
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   1.00000000   0.82000000   0.05600752   0.11722508   0.06273684   0.25047324 
##     coef.var 
##   0.30545517 
## ------------------------------------------------------------ 
## : Rating_CC
## : channel
## : unlimited
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.65000000   0.62500000   0.05843350   0.12230272   0.06828947   0.26132255 
##     coef.var 
##   0.41811608 
## ------------------------------------------------------------ 
## : Rating_SE
## : radial
## : unlimited
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.80000000   0.72500000   0.05019698   0.10506349   0.05039474   0.22448772 
##     coef.var 
##   0.30963824 
## ------------------------------------------------------------ 
## : Rating_CC
## : radial
## : unlimited
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.70000000   0.66500000   0.05393710   0.11289164   0.05818421   0.24121403 
##     coef.var 
##   0.36272787
by(binary$value, list(binary$variable, binary$transmission), stat.desc , basic = FALSE)
## : Rating_SE
## : channel
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   1.00000000   0.79523810   0.05454408   0.11377696   0.06247619   0.24995238 
##     coef.var 
##   0.31431137 
## ------------------------------------------------------------ 
## : Rating_CC
## : channel
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.80000000   0.75238095   0.05372729   0.11207316   0.06061905   0.24620936 
##     coef.var 
##   0.32724029 
## ------------------------------------------------------------ 
## : Rating_SE
## : radial
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.90000000   0.75000000   0.06386664   0.13367441   0.08157895   0.28562029 
##     coef.var 
##   0.38082705 
## ------------------------------------------------------------ 
## : Rating_CC
## : radial
##       median         mean      SE.mean CI.mean.0.95          var      std.dev 
##   0.90000000   0.81500000   0.05040624   0.10550148   0.05081579   0.22542358 
##     coef.var 
##   0.27659335

6 Statistical Test

library(afex)
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - NEWS: emmeans() for ANOVA models now uses model = 'multivariate' as default.
## - Get and set global package options with: afex_options()
## - Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attache Paket: 'afex'
## Das folgende Objekt ist maskiert 'package:lme4':
## 
##     lmer
library(emmeans)

a1 <- aov_car(value ~ variable*transmission*energy + Error(subj_code/(variable)), continuous)
## Converting to factor: transmission, energy
## Contrasts set to contr.sum for the following variables: transmission, energy
a1
## Anova Table (Type 3 tests)
## 
## Response: value
##                         Effect    df  MSE         F   ges p.value
## 1                 transmission 1, 77 0.05      0.60  .004    .442
## 2                       energy 1, 77 0.05 11.77 ***  .070   <.001
## 3          transmission:energy 1, 77 0.05      0.00 <.001    .986
## 4                     variable 1, 77 0.05 69.76 ***  .314   <.001
## 5        transmission:variable 1, 77 0.05 13.80 ***  .083   <.001
## 6              energy:variable 1, 77 0.05 22.39 ***  .128   <.001
## 7 transmission:energy:variable 1, 77 0.05    3.23 +  .021    .076
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
# same ANOVA as before
lmeModel <- lmer(value ~ variable*transmission*energy + (1|subj_code), data=continuous)
## boundary (singular) fit: see help('isSingular')
# follow-up analysis 

ls1 <- lsmeans(a1, c("variable","transmission","energy")) # joint evaluation (basically gives the same table)
ls1
##  variable  transmission energy    lsmean     SE df lower.CL upper.CL
##  Rating_SE channel      specific   0.930 0.0513 77    0.828    1.032
##  Rating_CC channel      specific   0.275 0.0483 77    0.179    0.371
##  Rating_SE radial       specific   0.710 0.0500 77    0.610    0.809
##  Rating_CC radial       specific   0.443 0.0471 77    0.349    0.537
##  Rating_SE channel      unlimited  0.820 0.0513 77    0.718    0.922
##  Rating_CC channel      unlimited  0.625 0.0483 77    0.529    0.721
##  Rating_SE radial       unlimited  0.725 0.0513 77    0.623    0.827
##  Rating_CC radial       unlimited  0.665 0.0483 77    0.569    0.761
## 
## Confidence level used: 0.95
ls2 <- lsmeans(a1, c("variable","transmission")) # joint evaluation (basically gives the same table)
ls2
##  variable  transmission lsmean     SE df lower.CL upper.CL
##  Rating_SE channel       0.875 0.0363 77    0.803    0.947
##  Rating_CC channel       0.450 0.0341 77    0.382    0.518
##  Rating_SE radial        0.717 0.0358 77    0.646    0.789
##  Rating_CC radial        0.554 0.0337 77    0.487    0.621
## 
## Results are averaged over the levels of: energy 
## Confidence level used: 0.95
ls3 <- lsmeans(a1, c("variable","energy")) # joint evaluation (basically gives the same table)
ls3
##  variable  energy    lsmean     SE df lower.CL upper.CL
##  Rating_SE specific   0.820 0.0358 77    0.748    0.891
##  Rating_CC specific   0.359 0.0337 77    0.292    0.426
##  Rating_SE unlimited  0.772 0.0363 77    0.700    0.845
##  Rating_CC unlimited  0.645 0.0341 77    0.577    0.713
## 
## Results are averaged over the levels of: transmission 
## Confidence level used: 0.95
# same ANOVA as before
lmeModel <- lmer(value ~ variable*Cond_sum + (1|subj_code), data=tdata_long)

# follow-up analysis 

ls1 <- lsmeans(lmeModel, c("Cond_sum","variable")) # joint evaluation (basically gives the same table)
ls1
##  Cond_sum              variable  lsmean     SE  df lower.CL upper.CL
##  binary_channel        Rating_SE  0.795 0.0509 223    0.695    0.896
##  binary_raidal         Rating_SE  0.750 0.0521 223    0.647    0.853
##  cont_channel_limited  Rating_SE  0.930 0.0521 223    0.827    1.033
##  cont_channel_ulimited Rating_SE  0.820 0.0521 223    0.717    0.923
##  cont_radial_limited   Rating_SE  0.710 0.0509 223    0.609    0.810
##  cont_radial_unlimited Rating_SE  0.725 0.0521 223    0.622    0.828
##  binary_channel        Rating_CC  0.752 0.0509 223    0.652    0.853
##  binary_raidal         Rating_CC  0.815 0.0521 223    0.712    0.918
##  cont_channel_limited  Rating_CC  0.275 0.0521 223    0.172    0.378
##  cont_channel_ulimited Rating_CC  0.625 0.0521 223    0.522    0.728
##  cont_radial_limited   Rating_CC  0.443 0.0509 223    0.343    0.543
##  cont_radial_unlimited Rating_CC  0.665 0.0521 223    0.562    0.768
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
ls2 <- lsmeans(a1, c("variable","transmission")) # joint evaluation (basically gives the same table)
ls2
##  variable  transmission lsmean     SE df lower.CL upper.CL
##  Rating_SE channel       0.875 0.0363 77    0.803    0.947
##  Rating_CC channel       0.450 0.0341 77    0.382    0.518
##  Rating_SE radial        0.717 0.0358 77    0.646    0.789
##  Rating_CC radial        0.554 0.0337 77    0.487    0.621
## 
## Results are averaged over the levels of: energy 
## Confidence level used: 0.95
ls3 <- lsmeans(a1, c("variable","energy")) # joint evaluation (basically gives the same table)
ls3
##  variable  energy    lsmean     SE df lower.CL upper.CL
##  Rating_SE specific   0.820 0.0358 77    0.748    0.891
##  Rating_CC specific   0.359 0.0337 77    0.292    0.426
##  Rating_SE unlimited  0.772 0.0363 77    0.700    0.845
##  Rating_CC unlimited  0.645 0.0341 77    0.577    0.713
## 
## Results are averaged over the levels of: transmission 
## Confidence level used: 0.95
############### 
# a conditional analysis 

# simple main effects 
t <- pairs(ls1) # compares rep-measure differences separately for each between-factor level
t
##  contrast                                                          estimate
##  binary_channel Rating_SE - binary_raidal Rating_SE                 0.04524
##  binary_channel Rating_SE - cont_channel_limited Rating_SE         -0.13476
##  binary_channel Rating_SE - cont_channel_ulimited Rating_SE        -0.02476
##  binary_channel Rating_SE - cont_radial_limited Rating_SE           0.08571
##  binary_channel Rating_SE - cont_radial_unlimited Rating_SE         0.07024
##  binary_channel Rating_SE - binary_channel Rating_CC                0.04286
##  binary_channel Rating_SE - binary_raidal Rating_CC                -0.01976
##  binary_channel Rating_SE - cont_channel_limited Rating_CC          0.52024
##  binary_channel Rating_SE - cont_channel_ulimited Rating_CC         0.17024
##  binary_channel Rating_SE - cont_radial_limited Rating_CC           0.35238
##  binary_channel Rating_SE - cont_radial_unlimited Rating_CC         0.13024
##  binary_raidal Rating_SE - cont_channel_limited Rating_SE          -0.18000
##  binary_raidal Rating_SE - cont_channel_ulimited Rating_SE         -0.07000
##  binary_raidal Rating_SE - cont_radial_limited Rating_SE            0.04048
##  binary_raidal Rating_SE - cont_radial_unlimited Rating_SE          0.02500
##  binary_raidal Rating_SE - binary_channel Rating_CC                -0.00238
##  binary_raidal Rating_SE - binary_raidal Rating_CC                 -0.06500
##  binary_raidal Rating_SE - cont_channel_limited Rating_CC           0.47500
##  binary_raidal Rating_SE - cont_channel_ulimited Rating_CC          0.12500
##  binary_raidal Rating_SE - cont_radial_limited Rating_CC            0.30714
##  binary_raidal Rating_SE - cont_radial_unlimited Rating_CC          0.08500
##  cont_channel_limited Rating_SE - cont_channel_ulimited Rating_SE   0.11000
##  cont_channel_limited Rating_SE - cont_radial_limited Rating_SE     0.22048
##  cont_channel_limited Rating_SE - cont_radial_unlimited Rating_SE   0.20500
##  cont_channel_limited Rating_SE - binary_channel Rating_CC          0.17762
##  cont_channel_limited Rating_SE - binary_raidal Rating_CC           0.11500
##  cont_channel_limited Rating_SE - cont_channel_limited Rating_CC    0.65500
##  cont_channel_limited Rating_SE - cont_channel_ulimited Rating_CC   0.30500
##  cont_channel_limited Rating_SE - cont_radial_limited Rating_CC     0.48714
##  cont_channel_limited Rating_SE - cont_radial_unlimited Rating_CC   0.26500
##  cont_channel_ulimited Rating_SE - cont_radial_limited Rating_SE    0.11048
##  cont_channel_ulimited Rating_SE - cont_radial_unlimited Rating_SE  0.09500
##  cont_channel_ulimited Rating_SE - binary_channel Rating_CC         0.06762
##  cont_channel_ulimited Rating_SE - binary_raidal Rating_CC          0.00500
##  cont_channel_ulimited Rating_SE - cont_channel_limited Rating_CC   0.54500
##  cont_channel_ulimited Rating_SE - cont_channel_ulimited Rating_CC  0.19500
##  cont_channel_ulimited Rating_SE - cont_radial_limited Rating_CC    0.37714
##  cont_channel_ulimited Rating_SE - cont_radial_unlimited Rating_CC  0.15500
##  cont_radial_limited Rating_SE - cont_radial_unlimited Rating_SE   -0.01548
##  cont_radial_limited Rating_SE - binary_channel Rating_CC          -0.04286
##  cont_radial_limited Rating_SE - binary_raidal Rating_CC           -0.10548
##  cont_radial_limited Rating_SE - cont_channel_limited Rating_CC     0.43452
##  cont_radial_limited Rating_SE - cont_channel_ulimited Rating_CC    0.08452
##  cont_radial_limited Rating_SE - cont_radial_limited Rating_CC      0.26667
##  cont_radial_limited Rating_SE - cont_radial_unlimited Rating_CC    0.04452
##  cont_radial_unlimited Rating_SE - binary_channel Rating_CC        -0.02738
##  cont_radial_unlimited Rating_SE - binary_raidal Rating_CC         -0.09000
##  cont_radial_unlimited Rating_SE - cont_channel_limited Rating_CC   0.45000
##  cont_radial_unlimited Rating_SE - cont_channel_ulimited Rating_CC  0.10000
##  cont_radial_unlimited Rating_SE - cont_radial_limited Rating_CC    0.28214
##  cont_radial_unlimited Rating_SE - cont_radial_unlimited Rating_CC  0.06000
##  binary_channel Rating_CC - binary_raidal Rating_CC                -0.06262
##  binary_channel Rating_CC - cont_channel_limited Rating_CC          0.47738
##  binary_channel Rating_CC - cont_channel_ulimited Rating_CC         0.12738
##  binary_channel Rating_CC - cont_radial_limited Rating_CC           0.30952
##  binary_channel Rating_CC - cont_radial_unlimited Rating_CC         0.08738
##  binary_raidal Rating_CC - cont_channel_limited Rating_CC           0.54000
##  binary_raidal Rating_CC - cont_channel_ulimited Rating_CC          0.19000
##  binary_raidal Rating_CC - cont_radial_limited Rating_CC            0.37214
##  binary_raidal Rating_CC - cont_radial_unlimited Rating_CC          0.15000
##  cont_channel_limited Rating_CC - cont_channel_ulimited Rating_CC  -0.35000
##  cont_channel_limited Rating_CC - cont_radial_limited Rating_CC    -0.16786
##  cont_channel_limited Rating_CC - cont_radial_unlimited Rating_CC  -0.39000
##  cont_channel_ulimited Rating_CC - cont_radial_limited Rating_CC    0.18214
##  cont_channel_ulimited Rating_CC - cont_radial_unlimited Rating_CC -0.04000
##  cont_radial_limited Rating_CC - cont_radial_unlimited Rating_CC   -0.22214
##      SE  df t.ratio p.value
##  0.0729 223   0.621  1.0000
##  0.0729 223  -1.849  0.7886
##  0.0729 223  -0.340  1.0000
##  0.0720 223   1.191  0.9892
##  0.0729 223   0.964  0.9983
##  0.0642 116   0.668  0.9999
##  0.0729 223  -0.271  1.0000
##  0.0729 223   7.139  <.0001
##  0.0729 223   2.336  0.4542
##  0.0720 223   4.896  0.0001
##  0.0729 223   1.787  0.8233
##  0.0738 223  -2.441  0.3835
##  0.0738 223  -0.949  0.9985
##  0.0729 223   0.555  1.0000
##  0.0738 223   0.339  1.0000
##  0.0729 223  -0.033  1.0000
##  0.0658 116  -0.989  0.9977
##  0.0738 223   6.441  <.0001
##  0.0738 223   1.695  0.8689
##  0.0729 223   4.215  0.0021
##  0.0738 223   1.153  0.9918
##  0.0738 223   1.492  0.9416
##  0.0729 223   3.026  0.1081
##  0.0738 223   2.780  0.1961
##  0.0729 223   2.438  0.3855
##  0.0738 223   1.559  0.9216
##  0.0658 116   9.961  <.0001
##  0.0738 223   4.136  0.0029
##  0.0729 223   6.685  <.0001
##  0.0738 223   3.593  0.0202
##  0.0729 223   1.516  0.9348
##  0.0738 223   1.288  0.9799
##  0.0729 223   0.928  0.9988
##  0.0738 223   0.068  1.0000
##  0.0738 223   7.390  <.0001
##  0.0658 116   2.966  0.1326
##  0.0729 223   5.176  <.0001
##  0.0738 223   2.102  0.6221
##  0.0729 223  -0.212  1.0000
##  0.0720 223  -0.595  1.0000
##  0.0729 223  -1.448  0.9525
##  0.0729 223   5.963  <.0001
##  0.0729 223   1.160  0.9913
##  0.0642 116   4.156  0.0035
##  0.0729 223   0.611  1.0000
##  0.0729 223  -0.376  1.0000
##  0.0738 223  -1.220  0.9869
##  0.0738 223   6.102  <.0001
##  0.0738 223   1.356  0.9704
##  0.0729 223   3.872  0.0077
##  0.0658 116   0.912  0.9989
##  0.0729 223  -0.859  0.9994
##  0.0729 223   6.551  <.0001
##  0.0729 223   1.748  0.8436
##  0.0720 223   4.301  0.0015
##  0.0729 223   1.199  0.9886
##  0.0738 223   7.322  <.0001
##  0.0738 223   2.576  0.2997
##  0.0729 223   5.107  <.0001
##  0.0738 223   2.034  0.6698
##  0.0738 223  -4.746  0.0002
##  0.0729 223  -2.304  0.4772
##  0.0738 223  -5.288  <.0001
##  0.0729 223   2.500  0.3457
##  0.0738 223  -0.542  1.0000
##  0.0729 223  -3.049  0.1018
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 12 estimates
t <- confint(t, level = 0.95)
t
##  contrast                                                          estimate
##  binary_channel Rating_SE - binary_raidal Rating_SE                 0.04524
##  binary_channel Rating_SE - cont_channel_limited Rating_SE         -0.13476
##  binary_channel Rating_SE - cont_channel_ulimited Rating_SE        -0.02476
##  binary_channel Rating_SE - cont_radial_limited Rating_SE           0.08571
##  binary_channel Rating_SE - cont_radial_unlimited Rating_SE         0.07024
##  binary_channel Rating_SE - binary_channel Rating_CC                0.04286
##  binary_channel Rating_SE - binary_raidal Rating_CC                -0.01976
##  binary_channel Rating_SE - cont_channel_limited Rating_CC          0.52024
##  binary_channel Rating_SE - cont_channel_ulimited Rating_CC         0.17024
##  binary_channel Rating_SE - cont_radial_limited Rating_CC           0.35238
##  binary_channel Rating_SE - cont_radial_unlimited Rating_CC         0.13024
##  binary_raidal Rating_SE - cont_channel_limited Rating_SE          -0.18000
##  binary_raidal Rating_SE - cont_channel_ulimited Rating_SE         -0.07000
##  binary_raidal Rating_SE - cont_radial_limited Rating_SE            0.04048
##  binary_raidal Rating_SE - cont_radial_unlimited Rating_SE          0.02500
##  binary_raidal Rating_SE - binary_channel Rating_CC                -0.00238
##  binary_raidal Rating_SE - binary_raidal Rating_CC                 -0.06500
##  binary_raidal Rating_SE - cont_channel_limited Rating_CC           0.47500
##  binary_raidal Rating_SE - cont_channel_ulimited Rating_CC          0.12500
##  binary_raidal Rating_SE - cont_radial_limited Rating_CC            0.30714
##  binary_raidal Rating_SE - cont_radial_unlimited Rating_CC          0.08500
##  cont_channel_limited Rating_SE - cont_channel_ulimited Rating_SE   0.11000
##  cont_channel_limited Rating_SE - cont_radial_limited Rating_SE     0.22048
##  cont_channel_limited Rating_SE - cont_radial_unlimited Rating_SE   0.20500
##  cont_channel_limited Rating_SE - binary_channel Rating_CC          0.17762
##  cont_channel_limited Rating_SE - binary_raidal Rating_CC           0.11500
##  cont_channel_limited Rating_SE - cont_channel_limited Rating_CC    0.65500
##  cont_channel_limited Rating_SE - cont_channel_ulimited Rating_CC   0.30500
##  cont_channel_limited Rating_SE - cont_radial_limited Rating_CC     0.48714
##  cont_channel_limited Rating_SE - cont_radial_unlimited Rating_CC   0.26500
##  cont_channel_ulimited Rating_SE - cont_radial_limited Rating_SE    0.11048
##  cont_channel_ulimited Rating_SE - cont_radial_unlimited Rating_SE  0.09500
##  cont_channel_ulimited Rating_SE - binary_channel Rating_CC         0.06762
##  cont_channel_ulimited Rating_SE - binary_raidal Rating_CC          0.00500
##  cont_channel_ulimited Rating_SE - cont_channel_limited Rating_CC   0.54500
##  cont_channel_ulimited Rating_SE - cont_channel_ulimited Rating_CC  0.19500
##  cont_channel_ulimited Rating_SE - cont_radial_limited Rating_CC    0.37714
##  cont_channel_ulimited Rating_SE - cont_radial_unlimited Rating_CC  0.15500
##  cont_radial_limited Rating_SE - cont_radial_unlimited Rating_SE   -0.01548
##  cont_radial_limited Rating_SE - binary_channel Rating_CC          -0.04286
##  cont_radial_limited Rating_SE - binary_raidal Rating_CC           -0.10548
##  cont_radial_limited Rating_SE - cont_channel_limited Rating_CC     0.43452
##  cont_radial_limited Rating_SE - cont_channel_ulimited Rating_CC    0.08452
##  cont_radial_limited Rating_SE - cont_radial_limited Rating_CC      0.26667
##  cont_radial_limited Rating_SE - cont_radial_unlimited Rating_CC    0.04452
##  cont_radial_unlimited Rating_SE - binary_channel Rating_CC        -0.02738
##  cont_radial_unlimited Rating_SE - binary_raidal Rating_CC         -0.09000
##  cont_radial_unlimited Rating_SE - cont_channel_limited Rating_CC   0.45000
##  cont_radial_unlimited Rating_SE - cont_channel_ulimited Rating_CC  0.10000
##  cont_radial_unlimited Rating_SE - cont_radial_limited Rating_CC    0.28214
##  cont_radial_unlimited Rating_SE - cont_radial_unlimited Rating_CC  0.06000
##  binary_channel Rating_CC - binary_raidal Rating_CC                -0.06262
##  binary_channel Rating_CC - cont_channel_limited Rating_CC          0.47738
##  binary_channel Rating_CC - cont_channel_ulimited Rating_CC         0.12738
##  binary_channel Rating_CC - cont_radial_limited Rating_CC           0.30952
##  binary_channel Rating_CC - cont_radial_unlimited Rating_CC         0.08738
##  binary_raidal Rating_CC - cont_channel_limited Rating_CC           0.54000
##  binary_raidal Rating_CC - cont_channel_ulimited Rating_CC          0.19000
##  binary_raidal Rating_CC - cont_radial_limited Rating_CC            0.37214
##  binary_raidal Rating_CC - cont_radial_unlimited Rating_CC          0.15000
##  cont_channel_limited Rating_CC - cont_channel_ulimited Rating_CC  -0.35000
##  cont_channel_limited Rating_CC - cont_radial_limited Rating_CC    -0.16786
##  cont_channel_limited Rating_CC - cont_radial_unlimited Rating_CC  -0.39000
##  cont_channel_ulimited Rating_CC - cont_radial_limited Rating_CC    0.18214
##  cont_channel_ulimited Rating_CC - cont_radial_unlimited Rating_CC -0.04000
##  cont_radial_limited Rating_CC - cont_radial_unlimited Rating_CC   -0.22214
##      SE  df lower.CL upper.CL
##  0.0729 223  -0.1955   0.2859
##  0.0729 223  -0.3755   0.1059
##  0.0729 223  -0.2655   0.2159
##  0.0720 223  -0.1520   0.3235
##  0.0729 223  -0.1705   0.3109
##  0.0642 116  -0.1712   0.2569
##  0.0729 223  -0.2605   0.2209
##  0.0729 223   0.2795   0.7609
##  0.0729 223  -0.0705   0.4109
##  0.0720 223   0.1146   0.5901
##  0.0729 223  -0.1105   0.3709
##  0.0738 223  -0.4236   0.0636
##  0.0738 223  -0.3136   0.1736
##  0.0729 223  -0.2002   0.2812
##  0.0738 223  -0.2186   0.2686
##  0.0729 223  -0.2431   0.2383
##  0.0658 116  -0.2843   0.1543
##  0.0738 223   0.2314   0.7186
##  0.0738 223  -0.1186   0.3686
##  0.0729 223   0.0664   0.5478
##  0.0738 223  -0.1586   0.3286
##  0.0738 223  -0.1336   0.3536
##  0.0729 223  -0.0202   0.4612
##  0.0738 223  -0.0386   0.4486
##  0.0729 223  -0.0631   0.4183
##  0.0738 223  -0.1286   0.3586
##  0.0658 116   0.4357   0.8743
##  0.0738 223   0.0614   0.5486
##  0.0729 223   0.2464   0.7278
##  0.0738 223   0.0214   0.5086
##  0.0729 223  -0.1302   0.3512
##  0.0738 223  -0.1486   0.3386
##  0.0729 223  -0.1731   0.3083
##  0.0738 223  -0.2386   0.2486
##  0.0738 223   0.3014   0.7886
##  0.0658 116  -0.0243   0.4143
##  0.0729 223   0.1364   0.6178
##  0.0738 223  -0.0886   0.3986
##  0.0729 223  -0.2562   0.2252
##  0.0720 223  -0.2806   0.1949
##  0.0729 223  -0.3462   0.1352
##  0.0729 223   0.1938   0.6752
##  0.0729 223  -0.1562   0.3252
##  0.0642 116   0.0526   0.4807
##  0.0729 223  -0.1962   0.2852
##  0.0729 223  -0.2681   0.2133
##  0.0738 223  -0.3336   0.1536
##  0.0738 223   0.2064   0.6936
##  0.0738 223  -0.1436   0.3436
##  0.0729 223   0.0414   0.5228
##  0.0658 116  -0.1593   0.2793
##  0.0729 223  -0.3033   0.1781
##  0.0729 223   0.2367   0.7181
##  0.0729 223  -0.1133   0.3681
##  0.0720 223   0.0718   0.5473
##  0.0729 223  -0.1533   0.3281
##  0.0738 223   0.2964   0.7836
##  0.0738 223  -0.0536   0.4336
##  0.0729 223   0.1314   0.6128
##  0.0738 223  -0.0936   0.3936
##  0.0738 223  -0.5936  -0.1064
##  0.0729 223  -0.4086   0.0728
##  0.0738 223  -0.6336  -0.1464
##  0.0729 223  -0.0586   0.4228
##  0.0738 223  -0.2836   0.2036
##  0.0729 223  -0.4628   0.0186
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## Conf-level adjustment: tukey method for comparing a family of 12 estimates
t <- subset(t, contrast == "binary_channel Rating_SE - binary_channel Rating_CC" | 
               contrast == "binary_raidal Rating_SE - binary_raidal Rating_CC" |
               contrast == "cont_channel_limited Rating_SE - cont_channel_limited Rating_CC" |
               contrast == "cont_radial_limited Rating_SE - cont_radial_limited Rating_CC" |
               contrast == "cont_channel_ulimited Rating_SE - cont_channel_ulimited Rating_CC" |
               contrast == "cont_radial_unlimited Rating_SE - cont_radial_unlimited Rating_CC")

# binary channel 
lo <- t[1,5]
hi <- t[1,6]
(bin_channel_width <- hi - lo)
## [1] 0.428117
(bin_channel_width_moe <- (hi - lo)/2)
## [1] 0.2140585
# binary radial
lo <- t[2,5]
hi <- t[2,6]
(bin_radial_width <- hi - lo)
## [1] 0.4386894
(bin_radial_width_moe <- (hi - lo)/2)
## [1] 0.2193447
# cont channel limited 
lo <- t[3,5]
hi <- t[3,6]
(cont_channel_limited_width <- hi - lo)
## [1] 0.4386894
(cont_channel_limited_width_moe <- (hi - lo)/2)
## [1] 0.2193447
# cont radial limited 
lo <- t[4,5]
hi <- t[4,6]
(cont_radial_limited_width <- hi - lo)
## [1] 0.4386894
(cont_radial_limited_width_moe <- (hi - lo)/2)
## [1] 0.2193447
# cont channel unlimited 
lo <- t[5,5]
hi <- t[5,6]
(cont_channel_unlimited_width <- hi - lo)
## [1] 0.428117
(cont_channel_unlimited_width_moe <- (hi - lo)/2)
## [1] 0.2140585
# cont radial unlimited 
lo <- t[6,5]
hi <- t[6,6]
(cont_radial_unlimited_width <- hi - lo)
## [1] 0.4386894
(cont_radial_unlimited_width_moe <- (hi - lo)/2)
## [1] 0.2193447
cond <- c("bin_channel_width", "bin_radial_width", "cont_channel_limited_width", "cont_radial_limited_width", 
              "cont_channel_unlimited_width", "cont_radial_unlimited_width")

ci_width <- c(bin_channel_width, bin_radial_width, cont_channel_limited_width, cont_radial_limited_width, 
              cont_channel_unlimited_width, cont_radial_unlimited_width)

CI_widths <- data.frame(cond, ci_width)
t$contrast <- factor(t$contrast, levels = c("binary_raidal Rating_SE - binary_raidal Rating_CC", 
                                            "binary_channel Rating_SE - binary_channel Rating_CC",
                                            "cont_radial_unlimited Rating_SE - cont_radial_unlimited Rating_CC",
                                            "cont_channel_ulimited Rating_SE - cont_channel_ulimited Rating_CC",
                                            "cont_radial_limited Rating_SE - cont_radial_limited Rating_CC",
                                            "cont_channel_limited Rating_SE - cont_channel_limited Rating_CC"), 
                                  labels = c("binary-radial", 
                                             "binary-channel",
                                             "cont.-radial-unlimited",
                                             "cont.-channel-unlimited",
                                             "cont.-radial-limited",
                                             "cont.-channel-limited"
                                    
                                  )
                      )

7 Additional summary graph

## Warning: Ignoring unknown aesthetics: y